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Course Learning Outcomes (CLO): After successful completion of the
course students will be able to -

Define the basic terminology and theorems associated

CLO1 i ) ; .
with Fourier Analysis and Laplace Transformation.
Properties of Laplace and Inverse Laplace Transformation

CLO2 and Laplace Transformation of derivatives, and

Applications.
Describe Fourier Series, Fourier Sine and Cosine Series,

CLO3 . i
Orthogonal Functions, Fourier Integrals.

cLO4 Apply the acquired concepts of Fourier Analysis, and Lapla

Transformation in engineering.




Course Content Summary

SL.

Content of Courses

Hrs

CLO’s

Definition of Laplace transformations, Some important
properties  of Laplace Transformations, and some related
mathematics, Laplace transformations of some elementary
functions, Laplace Transformation of 1st and 2nd derivatives
and general term derivatives, multiplication by t power n and
division by t, Inverse Laplace transformations

CLO1,
CLO2

Inverse Laplace transformations of some elementary

functions, Inverse  Laplace Transformation of 1st and
2nd derivatives and, Ordinary Differential Equations with

Constant Coefficients, Related Mathematics. Applications to
electrical circuits, L-R circuit related Problems.

CLO1, CLO2

Definition of Fourier series, Periodic Function, Even and
Odd Function, Piecewise Continuous Functions, Dirichlet
Conditions,  Parsivals Identity, Fourier  Series, Some
important properties of Fourier series, Half range Fourier
Sine or Cosine Series, and Related mathematics,
Convergence of Fourier series, Definition of orthogonal
Functions,Orthogonality, Orthogonal series

10

CLOs,
CLO1

Application of Fourier series in engineering, Boundary
value Problem, Laplace equation and Related

mathematics, Fourier integrals, Fourier Transforms,
Fourier sine and cosine Transforms, Convolution Theorem,
Application of Fourier integrals, Related mathematics.




Course

Plan

Specitying

content,

CLOSS

Teaching Learning, and Assessment sirategy
mapping with CLO’s

Teaching-

Week Topics Learning Azster;str:ent COI’I’ES{)((;?dI
Strategy 9y ng i
Laplace transformation
e Definition
1 e Notation L e Quiz
Discussion CLO1, CLO2
e Proof of formulas of Laplace
Transformations
Some important properties of
R Discussion
Transformations ’ '
2 e Oral = CLOL, CLO?
e Linearity property Presentation Assignment
e Change of scale property
e Related mathematics
Multiplication by t power n
Derivatives of Laplace
Transformation Oral Oral
s e Istand 2ndderivatives Presentation Presentation CLOL e
e General term derivatives
¢ Related mathematics
Inverse Laplace
transformation Grou
4 o Definition GroupWork | nnﬁ’em CLO1, CLO2
¢ Notation Proof of formulas of g
Laplace Transformations
Some important properties of
Inverse Laplace Transformations
5 e Linearity property Case Study Presentation CLO1,C

e Change of scale property
¢ Related mathematics




Course

Plan

Specitying

content,

CLOSS

Teaching Learning, and Assessment sirategy
mapping with CLO’s

: Corres
Teaching- .
: : Assessment | pondin
Week Topics Learning
Strategy Sty 9
CLO’s
Ordinary Differential Equations with
Constant Coefficients -
y k L CLOL,
6 e Initial and boundary Value Group Wor Written CLO?
problem Assignment
e Related mathematics
Applications to electrical circui
pplications to electrical ci cuits et Oral_ cLO4
7 e L-Rcircuit i . Presentation,
Discussion i CLO2
¢ Related problems Quiz
AppilcalilE to_ beam Discussion, Oral (_Sroup CLOs3,
8 e formulation : Assignment,
Presentation . CLO1
e Related problems Quiz
Fourier series
Definiti i
° e_|n|_|on _ Oral Preser_ltatlon, CLO3,
9 e Periodic Function : Written
) ) . Presentation . CLO1
e Piecewise function Assignment
e (Odd and even functions
Graph of different
10 types of functions Oral Quiz, CLO3,
e Even and odd functions Presentation Presentation CLO5
e Periodic functions
Some important properties of Fourier
Series
e Dirichlet Conditions
11 e Parseval’s Identity Written
Group Work .
e Theorems and related P Assignment,

mathematics




Course Plan Specitying content, CLO’s,
Teaching Learning, and Assessment sirategy
mapping with CLO’s

Teaching- Correspo
. : Assessment :
Week Topics Learning Strate nding
Strategy 9y CLO’s
Fourier series of Discussion,
12 different types of functions Related Oral Ass(iarztrjnpent CC::LL%L;
mathematics. Presentatio gnment,
s Presentation
.44 . - Discussion,
Half range Fourier Sine or Cosine Series Oral Quiz, Group CLO4

13 e Definition _ :

. Presentatio Assignment CLO1
¢ Related mathematics. n
e Fourier :

14 integrals Oral A s\é\imr;[:ﬁrelnt CLO4,
Convolution Theorem Presentation (guiz ’ CLO1
mathematics.

Orthogonality
o Definition of orthogonal Lecture el !
: i i Presentation, CLO4,

15 Functions Discussio Grou CLO1L

e Orthogonality, n Assi nrrl?ent
¢ Related mathematics g
Application
e Boundary value Problems .
16 e Laplace equation Practical Work Present_a tot CLOS
Quiz CLO1
e Related
mathematics.
App_llcatl_on of Fourier Series in Reading sz_, Written CLO4

17 Engineering Assignment Assignment, CL

e mathematical problems Oral
Presentation




Assessment pattern

CIE- Continuous Internal Evaluation (90 Marks)
Bloom’s Category Test

Remember 10
Understand 10
Apply 10
Analyze 10
Evaluate 15
Create 5

SEE- Semester End Examination (60 Marks)

]?:lotom’s
ategor - -
(Ol\ljlf(rﬁs 'I('Egt)s Assi 1r15r51ents eg%IlZSZ) Aget)e(rl%%n
60)
Remember 05
Understand 05 05
Apply 10 05 05 15
Analyze 10 05
Evaluate 10
Create 05




Laplace Transformation

Week 1
Topics: Laplace Transformation

Pages (7-11)

Infroduction

= Transformation in mathematics deals with the conversion of one
function to another function that may not
be in the same domain.

= | aplace transform is a powerful transformation
tool, which literally tfransforms the original
differential equation into an elementary
algebraic expression. This latter can then
simply be transformed once again, into the
solution of the original problem.

= This tfransform is named after the mathematician and renowned
astronomer Pierre Simon Laplace who lived in France.



Definition of Laplace Transform

Suppose that, fis a real or complex valued function of the
variable t>0 and sis areal or complex parameter. We
define the Laplace transform of f as

F(s) = L{f(} =/, et f(D)dt

L A7 (0} =Fs)

t domain s domain



Laplace Transformation: Let F(t) be a function of t specified for t=>0. Then the Laplace
Transform of F(t), denoted by L{F(t)} is define by

LIF()} = f(s) = je—sfF(t) dt ,where the parameter s is real.

Some formula of Laplace Transformation

n!

O Lt} = gz (D) Lfe*} =
(iii) L{cos at} = > s>0
s2 + a?

Question: Prove that L{ea} = :161.
Solution:
Let, F(t)=ex

By the definition of Lapla

LIFO)} = [esF@



So, L{edt} = je—steat dt
0

= Ie*“at a = Ie-(s-aﬁ dt

0 0

p-(s-al =
= | = - (e —e%) =L, s>a
—(s-a)|, —(s-a) s—a

Question: Prove that £{1} = 1; s>0

Solution:
Let, F(t)=1

By the definition of Laplace transformation, we know that
LIF®)} = [esF@ dt
0
So, L{eat} = [e=.Ldt
0

e—St°°
=i(e*°°—e°) =1, s>0
=S -S S

=Te—St da =
0

0

Question: Prove that £{t} = +, s >

s2’
Solution:
Let, F(t)=t

By the definition of Lapla

LIF®)} = [esF@

So, L{t} = fe—



=Te5‘t dt =t]ie-st dt — T{ Te-st dt { dt
> 0 J
—T{
0 0

1) e
} o= ‘(—sj =
Question: Prove that £{4 eat} = Sf“a, s>a

e- st

=t

Question: Prove that £L{5} = ;, s>0

Question: Prove that L{3t} =<, s > 0

2)



Week 2
Topics: Properties of Laplace

Transformation Pages (12-15)

Elementary Properties of Laplace
Transformation

Linear Property : If ¢, and c, are any constants while F,(t) and F,(t) are functions

with Laplace transforms f,(s) and f,(s), then L {c,F,(t)+c,F,(t)}=c,f,(s)+c,f,(s)
First translation or shifting property : If L{F(t)}=f(s), then L{e®*'F (t)}=f(s-a)

Second translation or shifting property : If L{F(t)}=f(s) and G(t)= {g(t & a)fi : Z

then L{G(t)} = e~ f(s)

Laplace transformation of derivatives: If L{F(t)} = f(s), then L(F'(t)) = s f(s) - F(0)

Laplace transformation of integral: If L{F(t)} =f(s), then L{ fot F(u)du} =@

Multiplication by £": If L{F(t)}=f(s), then L{t"F(£)}=(—=1)"f ™) (s)

Division by t: If L{F(t)}=f(s), then L{ﬂ:—)}=fs°° f(u)du provided lt'-»"(‘) F(t)/t exists.

Linear property of L




L{c1f1(0) + c2f2(1) + -+ + cuf (D)}
= c1L{f1()} + c2L{f2(O)} + --- + cnl{fn(t)}

Questions-1: Find the Laplace transformation of 4e5t + 6t3 — 3 sin4t + 5 cos 2t

Solution: By linear property of Laplace transformations, we have
L{4e5t + 6t3 — 3sin4t + 5 cos 2t}
= 4L{e5t} + 6L{t3} — 3L{sin 4t} + 5L{cos 2t}

1 3! 4
= 4 (=) + 6 (0 — 3 (Grg2) + 5 (gD

4 36 12 5s
s—5 s4 s2416 s2+44

Question-2: Find the Laplace transformation of  3t* + 4e-3¢
3 cos 2t.

Solution: By linear property of Laplace transformati
L{3t* + 4e—3t — 2sin 5t

Question: Find the Laplac



(i) 7t* +5e-%t —4sin 5t + 2 cos 2t

(ii) 3t +4e™t +3cos 4t — 2sin 6t

(11i) 10t —15e +12sint + 6 cos 6t

(iv) 10sin10t —12t" —2cost +e

(v)10t® —5e" —20sin 6t + 20 cos 7t
(vii)13e!® +6et +12t8 +6sint +2cos 9t
(viii) 275t + 7e8t +17 —2sin8t + 7 cost

Change of scale or shifting property:

If {F(t)}= f(s),then L{extF(t)} = f(s — a)

Questions: Find the Laplace transformation of the expressione—2t(3 ¢
5 sin 6t).

Solution: Wehave  L{3 cos6t — 5 sin 6t}

S 6
3s 30 3s —

s2+4+36 s2+ 36

Then L{e—2t(3 cos 6t — 5sin 6t)} = %ﬁzl_i%

Question-2: Find the Laplace transfo
(i)e?2t(3 cos4t — 4 sin

Solution: (i) We have



3s 20 3s —20

s24+16 s2416 s2+16

_ 35—6-3

Then L{e2t(3 sin 4t — 4 cos 4t)} = 36=2=30 _ _370-90
(s—2)24+36  s2—4s+4+36

(iWe have  L{6 sin3t — 5 cos3t}
3 s
=6(z30 Sz a2

18 5s 18 — 5s

s2+9 s24+49 s2+49

18—55—2

Then L{e—4t(6 sin3t — 5 cos 3t)} = 8=+ i

(s+4)249

Question: Find the Laplace transformati
(i) 2e

T s2—45+40



Week 3
Topics: Laplace Transformation of derivatives

Pages (16-18)

Laplace Transformation of derivatives:

If {F(©)} = f(s),then L{F'(t)} = sf(s) — F(0)
and L{F"(£)} = s2f(s) — sF(0) — F'(0)

Multiplication by powers of t:

If {(F()} = f(s) , then L{t"F(D)} = (—1)n L £(s)

dsn

Question: Find L*t sinat}.

Solution: Since we know that,

L{sinat} =

So,

Question: Find L{t2e2t}



LAPLACE TRANSFORM OF DERIVATIVES
13. Prove Theorem 1-6: 1If L {F(t)} = f(s), then £ {F'(f)} = sf(8) — F(0).

Using integration by parts, we have

£y P
c{F(t) = j; eF@0dt = lim | e wF(at
-0 0

P p -
lim {. st F(t) L + d; et F(2) dt}

P
‘!i-t.nw {e"’F'(P) - F(0) + lj; e~ st F(t) dt}

sj; e~stF(t)dt — F(0)

8f(s) — F(0)
using the fact that F(t) is of exponential order y as t— «, so that ‘!im e~ PF(P) = 0 for s>y.

For cases where F'(t) is not continuous at ¢t =0, see Problem 68.

14. Prove Theorem 1-9, Page 4: If £ {F(t)} = f(s) then £ {F”(t)} = s*f(s) — s F'(0) — F"(0).
By Problem 13,
£{G'(t)} = sL{G@®)} — GO) = sg(s) — G(O)
Let G(t) = F'(t). Then
L{F"(t)} = sL{F'(t)} — F'(0)
s[s L{F(t)} — F(0)] — F'(0)

ind (a) £ {tsinat}, (b) £ {t*cosat}.

(a) Since L ({sinat} = aT:-_a*' we have by Problem 19

LA{tsinat} = —%(;—,—%‘;)

17



Another method.

: 2 1 — - t = _—_
Since L {cos at} .’; e St cosat dt po g

we have by differentiating with respect to the parameter a [using Leibnitz’s rule],

L2
da .},

A g

e Yeosatdt — f e~st{—tsinat}dt = — L {tsinat}
0

daf _3___> O~
da \ 52 + a? = (22 + a?)2

. 2as
LA{tsinat} = m

from which

Note that the result is equivalent to T‘:—.c {cosat} = L {-d%cos at}.

Since . {cosatl} -=- we have by Problem 19

- -
s2+qt’

@ 8 _ 28 — 6a’s
c {tz cos at" s .d? (m) o '—(ma—

We can also use the second method of part (a) by writing

LA{t2cosat} = .c{—%(coswt)} = ——‘l.c{cosat}

which gives the same result.

18



Week 4
Topics: Inverse Laplace Transformation

Pages (19-30)

Inverse Laplace Transform

19



Definition of Inverse Laplace Transform

In order to apply the Laplace transform to physical problems, it is
necessary to invoke the inverse transform. If L{f(t)}= F(s), then the
inverse Laplace Transform is denoted by

LYHF(s)}=f@), t=0

Complex Frequency
Domain £(s)



Some formula of inverse Laplace Transformation

. 1 Lt y 1
DL Mgzt = =1 (inL-t {s > a} = et
S a
cos -1 A g -1 — 7
(ii)) L {52 n a2} = cos at (iv)L {52 i aZ} = sinat

Linear property of inverse Laplace transformation: If czand cz are any
constants while f1(s) and f2(s) are functions with Laplace transformations F(t) and
F2(t) respectively, then

L~He1f108) + c2f2(8)} = c1L71{f1(8)} + c2L71{f2(s) }
is called the linear property of inverse Laplace transformation. And for n times we
can write,

L c1f1(s) + c2f2(s) + - + cnfn(s)}
= 1 L7H{f1(8)} + c2L7Hf2(8)} + -+ + cpnL1{fn(s)}

L_l{lel(S) =F szz(s) Tt Cnfn(s)}
= c1L7Hf1(8)} + c2L7{f2(s)} + -+ + cnL

Questions-1: Find the inverse Laplace transformation of t
4 3s 5

+
s—2 s2+16 s2+4

Solution: By linear property of Laplace tran
1 4
-1
" {55 y s—2

1 1
= L1 {5} +4L71{

1 4!

S -1
L7 os) + 4L




1

5
=_4‘ 2t — il
24t + 4e 3cos4t+251n2t

s—3 5249 s2425

c =g c : 55+4 6 8s 7
Question-2: Find the inverse Laplace transformation — T

Solution: By linear property of Laplace transformations, we have
55+ 4 6 8s 7

g1 a
s ts3 39 tszr25

Ak _ia a 1 8s
=5LM{ " }y+4L1{ " Y+6L7T _ 11 -1
s4 $5 {5—3} y’ {52+9}+L {
5 3! 4 4! 1 S
=2L-a{ 7 ol T Y_ar-1
6 S3+1}+24L {SIZFI}+6{S_3} 8L {S2+9

1+

5 1 7
_ ~ A3t 3t _ i
—6t +6t +6e 80053t+551

Question: Find the Inverse Laplace transformation o

6 3+4s

i _
W 3 w16 "

If L-1{f(s)} = F



65—4

Questions: Find the inverse Laplace transformation of the expression pomrp
§4—4S

Solution: We have L£-1 {%

iy } = L_]-{ 2_65—12-;8 } a8 L_l { 6(5—2)+8 }
$2—45+20 s2—2.5.2+22+16 (s—2)2+16
(s —2) 4
=6L"1 +2 L1
{(s — 2)2 16} {(s —2)2+ 16}

= 6 e?t cos4t + 2 e?t sin 4t

Question-2: Find the inverse Laplace transformation

g 4s—25 o 6s—4
of (l) s2—6s+34 (ll) §2—2s5+10

Solution: We have £-1 {524_36‘51534} = L-1{

(s —3) } 13
(s —3)2+52

=4L-1]



Result on inverse Laplace transform

Result: 1 Linear property

L[f(t)] = F(s) and L[g(t)] = G(s) ,then L-1[aF(s) + bG(s)] = aL-1[F(s)] + bL-1[G(s)]
Where a and b are constants.

Proof:
We know that L[aF(s) + bG(s)] = aL[F(s)] + bL[G(s)]
=a F(s) £ b G(s)
(i.e.)a F(s) £ b G(s) = Llaf(t) £ bg(t)]

Operating L—1 on both sides, we get

L=1[aF(s) £ bG(s)] = af (t) £ bg(D)
L=aF(s) + bG(s)] = aL=1[F(s)] £ bL71[G(s)]
Result: 2 First shifting property w f(©) = L7HF(

(i) L71[F(s + @) = e~ L-1[F(s)]]

(i) L-1[F(s — a) = e®L~1[F(s)]]
Proof:
Let Lle~etf(t)] = F[s + a]
Operating L—1 on both sides, we get
e~af(t) = LY F[s + al]
L=1[F[s + a]] = e ®L~1[F(s)]
Result: 3 Multiplication by s.
If L-1[F(s)] = f(t) and f(0) = 0, then L1
Proof:

We know that  L[f'(t)] = sL[f
Operating L=1 on both side

f@® = L~YsF(s)]
Lf(6) = LYsF(s)
LI-F()] =

o L-1[sF(s



Result: 4 Division by s.
A= | ;L—l[F(s)]dt
Proof:
We know that L [ fg f (tdt] = 1;L[f(t)] = ;F(s)

Operating L—1 on both sides ,we get
t 1
Jof (©dt = L71[F(s)]
t 1 —il
ol [F()]dt = L™ [ F(s)]
. =1 [FE)] — [t
R ! [—(Sil] = fOL—l[F(s)] dt
Result: 5 Inverse Laplace transform of derivative
L-1F(s)] = L1 [LF(s)]
t ds
Proof:
We know that L[tf(t)] = ;iL[f(t)] = -diF(s)
S} S
Operating L—1 on both sides ,we get
d
tf@®) =—-L71[ F(s)]
ds
=il _—17_17r1d
LU F()] = L [LF(s)]
f@®) = 2L [LF(s)]
t ds
L-[F(s)] = *L-1[%F
[F(s)] 2 [a; ()]
Result: 6 Inverse Laplace transform of integral
L-1[F(s)] = tL71[[* F(s)ds]
S
Proof:
We know that L [%Q] = [, L(fF®) ds
= [, F(s)ds
Operating L—1 on both sides, we get
f(t—t) = L[ F(s) ds]
= tL-1[[*
f@® = L7 F(s) ds]
L] = L[ 7 F
Problems under invers
Example: 5.39 Find the i

(i) — (i)

2s+3
Solution:

1
452+



)L [ = L7 [ o]

aq 1 1 1l
(i) 171 [ = 17 [
=l -1 —Tl
4-L [[Sz+z]]
11 _. 3
—43/Zsmzt
=1sin3dt
6 2
1s3=3s247q _ ;o1 s3 _3s2 7
(iii) L7 [* 1=L [sT s4+sT

(iv) L-1 2] = 301 [—] + 501 [
s2+36 52436 52436

Inverse Laplace transform using First shifting theorem

Example: 5.40 Find the inverse Laplace transform for the followi

(I) (s+2)2 (") (s—3)4 ("I) (s+3)2+9
1 . s+2 -
W wmm W s (D
(ix) (5—s4)3 (x) sz—Zss+2 (xi)
Solution:
i [-1[—1—] = g—2t7-1[1] = -2
() [MZ] e [B] = e
(ii) 1[ ]—e3tL—1[1]—e 2t
L-1[—1—] = g-3t;-1[—1—
) [( +3)2+9] " [s2+
i —1—1 =il
(IV) = [52 25+2 =1L [
V L1 =L"1
( ) [52 4$+13:I
; L-1[—st2
() [(s+2)2+25 |

(vii)

L= 3L ]+7L 1[;14]

3 2
] = 1—3t+7—t,

-1 3s;|:5] = 3cos6t + Snbt Ssin6t
52436 6

L71[F(s + a)] = e~ ®L~1[F(s)]

1 1




= e 2L71[ " ] = e2tcos4t
s2+16

=11 s+3 3]
(s +3)2:| [(s+3)

(s+3)2 (s+3)2
=L [—] — 3Ll
+3

(viiiy L71[

(s+3)2
= e=3t — 3¢-3t[-1[1]
SZ
= e~3t —3e 3t
. -1 =118 4+4
(i) [( 4)3] [#
4

= L[] + L1
[ (s—4)3 [ (5—4)3 |
=[] +4L-1 [
(s—4)2 (s—4)3
= ett] -1 [1] + 4e4t]— 1[ ]
s2
2
= et + 4ettt
2!
= eftt D2
_1 1 =I- 11 s—1+1 ]
(x) [sz 25+2] & [( 1)2+1:I [(s—1)2+1
=11 +1-1
[(s 1)2+1:I I:(s—1)2+1:I
Tt P o
s24+1 s24+1
L[ 25+2] = elcost + etsint
25+3
. 1 71 2543 =11 2(s+3
(XI) . [52+65+25] L I:(s+3)2+16 [
= jj=1 [2(s;|:3)—6;|:3]
(s+3)2+16
= g3t -1 [25—3]
s2+16

= e 3t[2L-1]

S
L1 [—5H—] = -3t (2c0
52465425

1= 171

- 1
(X") = [52+6s 7



Inverse Using partial Fraction

) . Y
Example: 5.47 Find L[ = 1)(5_2)2]

Solution:
253 A B c
(s—-1)(s—2)2  s—1 Tt (5—2)2

_ A(s-2) 2+B(s—l}(s—2}+£‘(s—l}
(5—1)(s—2)2

A(s—2)2+B(s—1)(s—2)+C(s—1)=25s— 3

Puts =1 in(l) Puts =2 in
(8Y)
A= c=1
-1
25-3 -1, 1 1

T GoDGe-22 1 2 T2

25—3 1 1
L[ ]=-L71 T+ L[ T+
[(s—l)(s—2)2] [s—l 5—2

- _ 2 2ty 171
=—el +et +el LT[ F
25—3

-1 — _pt 4 2t 4 G2t
L [(5_1)(5_2)2]— et + et + et

Equating the coefficient of s*
A+B=0
E=—A=B=1

1

(s—2)%



Example: 5.49 Find the inverse Laplace transform of ass

Solution:
45+5 _ i Bs+c
(s+1)(s2+4)  s+1  s2+4
— A(s 2+4)+(Bs+c)(s+1)
(s+1)(s2+4)

A(s24+4)+ (Bs+c)(s+1)=4s+5
Puts = —1in (1) Equating coefficients of s’term in (1)
A1+4)+0=4(-1)+5|A+B=0

AGB)=1=A=¢ B=-A=B==

1 —1g421
P BN ST i
(s+1)(s2+4) s+1 s2+4
oz LS g2l A
T5(s+1)  5(s2+4)  5(s2+4)

L[5 o ty-qply lggp _S g, 2059 1
I:(s+1)(sz+1!'):I SL I:s ? [ sz+4] + 5 L I:s2+4:I

215in2t

5

1 1 21

-1 s e e B T
[(s+1)(s2+4)] e 50032t £33 sin2t

e b= lgcos2t B

(s+1)(s2+4)

29



155 11

Example: 5.48 Find the inverse Laplace transform of 2 —[H 1)(s—2)3

Solution:

552—15s—11 _ A B c c

(s+1)(s=2)%  s+1 @ 52 ' (s=2)2 ' (s=2)°

_ A[s—Z}a +B{s+1}[s—2}2 +C(s+1)(s—2)+D(s+1)
(s—1)(s—2)3

A(s—2P+B(s+1)(s—2)>+C(s+1)(s—2)+D(s+ 1) =552 — 155 — 11--- (1)

Puts = —1in(1) Puts =2 1in(1) Equating the coefficient of s°

A(—-27)=09 D(3)=-21 A+B=20
-2 -1 ——21_ _ _ _1

A—_2?=>A—3 D—a— 7 B = A=>B—3

Puts = 0 in (1), we get

—8A+4B-2C+ D =
—11

8, 4 o
SH3-20-7=-11
4-20=7-11

—20=-8=(C=4

552—155—11: B 1 n ¢ T
(+1)(s—-2)%  3(s+1)  3(s-2) @ (s-2)2 (s-2)3

55— 15s5-11 —
Ll 2 _L1 + L1 +4L7!
[(£+1){s -2)3 ] a{:ﬁ] [45 [

711

2]2] (s— 2)3]

-1 _
_3 t_l_ €2t+4€2tL 1[2]_'?2tL 1[5_3]

-1 155—11 Z1o-t 4 12t 2e7—171y 2tt_
L [(s+1}(s 2]3] +3ett +4e”t LT [G] —Tet 5




Week 5
Topics: Initial and Bounda

Pages (31-50)

Application of Laplace Transform



Solving Ordinary Differential Equation

Problem:
Y'+aY'+ bY = G(t) subject to the initial conditions Y(0) = A, Y' (0) =B
where q, b, A, B are constants.

Solution:

» | aplace transform of Y(t) be y(s), or, more concisely, y.

= Then solve fory in terms of s.

» Take the inverse transform, we obtain the desired solution Y.
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5.9 SOLUTION OF DIFFERENTIAL EQUATION BY LAPLACE TRANSFORM
TECHNIQUE

There are so many methods to solve a linear differential equation. If the initial conditions are known,
then Laplace transform technique is easier to solve the differential equation. The Laplace transform

transforms the differential equation into an algebraic equation.
LIy ®] = sLly®] — ¥(0)
LIy'(®] = s2Lly@®)] — sy(0) — ¥(0)
Problems using Partial Fraction

2
Example: 5.66 Solve‘fié -3 ‘fft+ 2x = 2, given x = 0and d;—t= 5 for t = Ousing Laplace transform
method.

Solution:

Given x" —3x" + 2x = 2;x(0) = 0; x'(0) = 5
Taking Laplace transform on both sides, we get,

Llx"(t)] = 3L[x'(t)] + 2L[x(t)] = 2L(1)

[s2L[x(t)] = 5x(0) = x'(0)] = 3[sL[x(D] = x(0)] + 2L[x(8)] = -
Substituting x(0) = 0; x'(0) = 5

[s2L[x(t)] — 0 — 5] — 3[sL[x(t)] — 0] + 2L[x()] = 2;
s2L[x(t)] — 3sL{x(t)] + 2L[x(t)] = 2;+ 5
s2L[x(t)] = 3sLlx(D)] + 2L[x(®)] = >+ 5
Put L[x(t)] =%
2% — 35X+ 28=2+5

[sZ2=s5Es 2]JE=ZS+ 5

(s — 1)(s—2)3?=2s+5

o 2+5s
T s(s=1)(s=2)
ider — 2> _ A4 B 4 C
Consider s(s—1)(s—2) s gl s—1 i s—2
2+5s — A(s—1)(s—2)+Bs(s—2)+Cs(s—
s(s—1)(s—2) s(s—1)(s—2)

A(s—1)(s—2)+Bs(s—2)+
Puts = 0 in (1)
A(-1D)(=2)=2
A=1

o s
s(s=1)(s=2)



wg=l_7 1 o 1
GO S 7 s—1+6s—2
1 L
() =LA = 7L ~ ]+ 6L ]
s s—1 s—2

x(t) =1—7et + 6e2t
Example: 5.67 Using Laplace transform solve the differential equationy” — 3y’ — 4y = 2e-t,
withy(0) =1 = y'(0).

Solution:

Giveny' — 3y — 4y = 2e~t; withy(0) = 1 = y'(0).
Taking Laplace transform on both sides, we get,

Lly'®] - 3Ly (O] — 4Lly(@®)] = 2L(e™)

[s2L[y(D)] = sy(0) — ¥'(0)] = 3[sLIy()] — y(0)] — 4L[y(O] =2 —
Substituting y(0) = 1 = y'(0).

1

2

[s2Lly(D)] — s — 1] = 3[sLly(D] - 1] - 4Lly(®D] = —

s+1

S2LIY(O)] = s — 1 = 3sLy(O] +3 — 4Ly(O] = —

s2L[y(t)] — 3sL[y(t)] — 4L[y(®)] = s-l-il +s—2
PutL[y(t)] =y
Py 3574y 4s—
s?y-3sy—4y= —+s—2
[s2—3s— 4= s+il+s_

[SZ —3s — 4_]—): 2+s(s+1)—2(s+1)
s

+1
2

— 2+s + 5—25-2
s+1
2

(s+1D)(s —4p="7,

. s2—s

¥ (s+1)(s+1)(s—4)

_ s2—s

b (s+1)2(s—4)
s2—s _ A B

Consider m = S+_1 GH1)2

s2—s — A(s+1)(s—4)+B(s—4)+C
(s+1)2(s—4) (s+1)2(s—4

A(s+1)(s—4) + B(s —
Puts = —1 in (1)

OB =N
B="2
5

s2—s
(s+1)2(s—4)



. B3 __2 1w
e 25(s+1)  5(s+1)2  25(s—4)

=By 1 g_27-17_1 12f R
y®) =5l o) — 567 o) + sl S

y(t) =18et —2te—t + 124
25 5 25

2
Example: 5.68 Solve the differential equationddy?— 3 d’:ﬁt- 2y = e~t, withy(0) = 1 and y'(0) = Ousing

Laplace transform.

Solution:

Giveny" — 3y + 2y = e~t; withy(0) = 1 and y'(0) = 1.
Taking Laplace transform on both sides, we get,

Lly'(®] = 3Ly (©)] + 2L[y(®)] = L(e™®)

[s2LIy(D)] = sy(0) = y'(0)] = 3[sLly(®)] — y(O)] + 2Ly(®)] = —
Substituting y(0) = 1 and y'(0) = 0.

[s2LIy(©] =5 = 0] = 3[sLly(®] — 1] + 2L[y(D)] = —

s+1

s2L[y()] — s — 3sLly(®)] + 3 + 2L[y(®)] = :11

S2LIy(®)] - 3sLIy(®] + 2Lly(®O)] = ——+5—3
PutL[y()] =7y

s2y-3sy+2y= —+s5s—3

[s2—3s+ 2= ——+5—

[SZ —3s+ 2]—3; 1+s(s+1)—3(s+1)
) s+1

— 1+s + s—3s-3
s+1
2

. . s —=25=2
(s =Dl —2)y="=24

. §2—25—2

¥ (s+1)(s—1)(s—2)

. §2—2s-2 A B
Consider +D(—D(-2)  s+1 =
§2—2s-2 — A(s—1)(s—2)+B(s+1)(

(s+1)(s—1)(s—2) (s+1)

As—1)(s—2)+B(s+ 1)

Puts = —1 in

)
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Example: 5.69 Using Laplace transform solve the differential equationy” + 2y’ — 3y = sint,

withy(0) = y'(0) = 0.

Solution:

Taking Laplace transform on both sides, we get,

Substituting y(0) = 0 = y'(0).

Given y" + 2y — 3y = sint with y(0) = 0 = y'(0).

LIy"(®)] + 2L[y' (®)] — 3L[y(t)] = L(sint)

[s2LIy(®)] = sy(0) — ¥ (0)] + 2[sLIy(D)] — y(0)] = BLIy(®)] =—, |

1

[s2L[y(©)] = 0 = 0] + 2[sL[y(®)] = 0] = 3Ly(®D] = —=

s24+1
s2LIy(®)] + 2sLly(®)] - 3Lly(O] = ——

s2+1
s2Ly(®] + 2sLly(D] = 3LIy(©O] =—,
PutL[y(8)] =y
1

Sz_y'|' 25}7— 35: m

1

2 - A
[s2+ 25— 3]y= poreT

1
(- DG +3%= -
_ 1
¥ (s—1)(s+3)(s2+1)

9 1 A B Cs+D
Considet ——M88M = —+ = -
(s—1)(s+3)(s2+1) s—1  s+3  s2+1

1 — A(s 2+ 1) ( s+3)+B(s—1)2(s
(s—1)(s+3)(s2+1) TD+(Cs+D)(s—1)(553n)(s43)(s2+1)

A(s2+1)(s+3)+B(s—1)(s2+ 1) + (Cs
Puts = 1 in(1) Puts = -3 in(1

8A=10+1 B(—4)(10) =

Bp="1

A= 40

DO =

Puts = 0in (1), we
et 3
A—B—-3D=1= 2+

8

1 3,1

3D = §+Z)_

3D

(s—1)(s+3)(s



- 1 1 s 1

¥ Be-D  20(43) 106241 56240
17-1 171 1 _1 A5 1 L-1
y(©) = ok [ (- 1) abr ! Z]— o L s2+1] [s2+1]

y(t) = —Set - —4%—3t - 1—(%)st — 2sint)

Example: 5.70 Using Laplace transform solve the differential equationy” — 3y  + 2y = 4e2t,
withy(0) = -3 and y'(0) =5

Solution:
Giveny" — 3y + 2y = 4e2t; with y(0) = —3 andy (0) = 5.
Taking Laplace transform on both sides, we get,

Ly"(®)] = 3L[y' ()] + 2L[y(t)] = 4L(e?)
[s2L[y(®)] = sy(0) — ¥'(0)] = 3[sLy(®)] — y(0)] + 2L[y()] = 4
Substitutingy(0) = —3 and y'(0) = 5.

[s2LIy(6)] + 35 — 5] = 3[sLIy(O)] + 3] + 2Ly(D] = —

s2L[y(t)] + 35 — 5 — 3sL[y(©)] — 9 + 2L[y(t)] = iz

"I)l
NH

s2L[y(t)] — 3sLly(t)] + 2L[y(t)] = ; —3s+ 14
PutL[y()] =

sZy- 3sy + 2= s——3s+
14
[s2—3s+ 2]y= ;+ 14 — 3s

[s2- 35 + 2= AU
57,
(s — J.).CS;Z_)QE_
4+(14-3s)(s—-2)
s=2
y= dEA=Ss)(s=2)
sre-siien) = sl

1S
(s—1)(s—2)2 s—1 (s—2)2

Consider

4+(14-35)(s—2) _ A(s—2) -IZ-B(s—l)(s—2)+C(s—1)
(s—1)(s—2)2 (s—1)(s—2)2

A(s —2)2+B(s—1)(s—2)+ C(s
pu)ts=1in Puts =2 i
)] ®
A=4-11 =

44+(T[4:3Z)(s—2) =
(s—1)(s—2)2



1
= —7et +4e2t + 4e2 71 ],

y(t) = —7et + 4e?t + 4ett

Example: 5.71 Using Laplace transform solve the differential equation y" — 4y + 8y = e2t,
withy(0) = 2 and y'(0) = 2.

Solution:

Taking Laplace transform on both sides, we get,

Substituting y(0) = 2 andy'(0) = —2.

Giveny' — 4y’ + 8y = e2t; with y(0) = 2 andy'(0) = —2.

LIy"®)] - 4Ll (O] + 8LIy(®)] = L(e?)
[s2Ly ()] = sy(0) = ¥/ (0)] — 4[sLly(®)] — y(O)] + 8Ly = —

[s2Lly(t)] — 25 + 2] — 4[sL[y()] — 2] + 8L[y(t)] =
S2L[y(5)] — 25 + 2 — 4sLy(0)] + 8 + BLIy(D] = —
s2L[y(t)] — 4sLy(®)] + 8L[y(®)] = ﬁ +2s—10

PutL[y(®)] =y

sZy— 4sy + 8y= L
s—2 10
[s2—4s + 8= £+25—

[52 — 45+ 8]'y= 14+(2s—10)(s—2)
s—2

y= 1+(25—10)(s—2)
G=2)(s7=4s+8)
— 1+(2s—-10)(s—2)
C=Dft=2
1+(25—10)(s—2) _ A o B(s—2)+C

G224 s—2 (5274
— Al(s—2) i4]+B[(s—2)+C](s—
G—21G—22+4]
Al(s — 2)2+ 4] + B[(s — 2) + CI(s — 2)

Puts = 2 in (1) Puts = 0 in (1)

Consider

44 =1 + 84+ 4B — 2C
0 2

A="



=1Le2t +7e2cos2t — 6e2t SM2t
4 4 2
y(t) = Le2t + 7 e2cos2t — 3e2tsin2t
4 4
Problems without using Partial Fraction

2
Example: 5.72 Solve using Laplace transform ¢ ZTZ— 2 dxj x = et,withx = Z,dxﬁ —latt=0

Solution:
Givenx' —2x +x = et; x(0) = 2; x'(0) = —1
Taking Laplace transform on both sides, we get,
LIx"®)] = 2L[x' (O] + LIx@®)] = L(e)
[s2L[x(8)] — 5x(0) — x'(0)] — 2[sL[x()] — x(0)] + L[x(t)] = :11
Substituting x(0) = 2; x'(0) = —1
[s2L[x(t)] — 25 + 1] — 2[sL[x(t)] — 2] + L[x(t)] = :11
s2L[x(8)] - 2sLIx(®)] + LIx(@®)] = —+2s—5
sZL[x(t)] — 2sL[x(t)] + L[x(t)] = ﬁ +2s—5
Put L[x(t)] =x

1

S2X — 2sXx +x = 1+Zs—5

s—

[s2—2s+ 1]x= S_Ll+25—5

—1)2f= L .
(s —1)%x s_1+23 5

By 1 + 2s 5
Y= ene2 T ez (12
x() =L-1[——]+2L-1[—] - 5L1]
(s=1)3 (=12
1 s—=1+1
— ot] -1 -1 .
el 2Lt ]

2

=ett 4 pp-1[—==1
e 2!+2L [(5—1)2+

2
=ett+2071[1]
2! s—1



Exercise: Find the Inverse Laplace transformation of the
followings:

~ 6s-10 N ds+12
(l) s2—4s +20 (l) s2+ & +16
.. 3s-8 ) 2s +4
(#3555 M) 213



The Laplace transform is a well established mathematical technique for solving a
differential equation. Many mathematical problems are solved using
transformations. The idea is to transform the problem into another problem that is
easier to solve. On the other side, the inverse transform is helpful to calculate the
solution to the given problem.

For better understanding, let us solve a first-order differential equation with the help
of Laplace transformation,

Consider y'- 2y = e¥* and y(0) = -5. Find the value of L(y).
First step of the equation can be solved with the help of the linearity equation:
Ly’ - 2y] = L(e*)

L(y’) - L(2y) =1/(s-3)

(because L(e%) =1/(s-a))

L(y) - 2s(y) =1/(s-3)

sL(y) - y(0) - 2L(y) =1/(s-3)

(Using Linearity property of the Laplace transform)
L(y)(s-2) + 5 =1/(s-3) (Use value of y(0) ie -5 (given))
L(y)(s-2) =1/(s-3) - 5

L(y) = (-5s+16)/(s-2)(s-3) ....(1)

here (-5s+16)/(s-2)(s-3) can be written as -6/s-2 + 1/(s-3) using partial fraction
method

(1) implies L(y) = -6/(s-2) +1/(s-3)

L(y) = -6e%* +




= s 2y—sY(0)—Y’(O)+y=S—1

2

= szy—s+2+y=S—21

1 " s—2
y:
s2(s*+1)  $2+1
_1 1 s 2
Iy aF

s 241 241 2+l
1 3

s 241 s2+1

Again taking Inverse Laplace Transformations, we
have

Ly}=Y = L1+ =

s2+

Y =t+ cost
—3sint

Question: Solve the following equations
trafisfermnatiens, ¥ (0)=0, Y'(0)=
Y'(t)-3Y'(0) +2Y (1) = 4e*, ¥ (0)=-3,




Solve Y”—-3Y'+2Y = 4¢*, Y(0) = -3, Y’(0) = 5.
We have L{Y") — 8.L{Y) + 2.2{Y} = 4.t}

{s?y — sY(0) — Y'(0)} — 3{sy —Y(0)} + 2y

{s2y + 88 —5} — 3{sy +38} + 2y =

4
8§—2

2 i S
(82—38+2)y + 8s 14 = e

4, 14-3s
(s2— 38+ 2)(s — 2) 82—3s+2

—3s82 + 208 — 24
(8 —1)(s—2)2

-7 4 4
g—1 T pg T pEag

4 4
§—2 * (8—2)2J

l = —Tet + 4e2t + 4te2t

43



5.9 SOLUTION OF DIFFERENTIAL EQUATION BY LAPLACE TRANSFORM
TECHNIQUE

There are so many methods to solve a linear differential equation. If the initial conditions are known,
then Laplace transform technique is easier to solve the differential equation. The Laplace transform

transforms the differential equation into an algebraic equation.
Ly (®] = sLly(®)] — y(0)
LIy'(®)] = s2Lly(®)] — sy(0) — y'(0)
Problems using Partial Fraction

2
Example: 5.66 Solve"ldf2 -3 ddlt + 2x = 2, given x = Oand d‘i: 5 for t = Ousing Laplace transform
method.

Solution:
Given x' —3x' +2x = 2; x(0) =0;x'(0) =5
Taking Laplace transform on both sides, we get,
Llx"(t)] = 3L[x'(®)] + 2L[x(t)] = 2L(1)
[s2L[x(t)] = sx(0) — x'(0)] — 3[sL[x()] — x(0)] + 2L[x(8)] = * "
Substituting x(0) = 0; x'(0) =5
[s2L[x(t)] — 0 — 5] — 3[sL[x(t)] — 0] + 2L[x(t)] =2 i
s2L[x(t)] — 3sL[x(t)] + 2L[x(t)] =2 +5
s2L[x(t)] — 3sL[x(t)] + 2L[x(t)] =2 +5
Put L[x(t)] =%
s%2x — 3sx + 2f=2;|-5
[s2—3s+ 2]x= ZS+ 5

(s — 1)(s—2)f=2s+5

o 2+5s
T s(s=1)(s=2)
: c
Consider —25>5 __ — A48 4%

s(s—1)(s—2) T s os-1 s—2
2+5s — A(s—1)(s—2)+Bs(s—2)+Cs(s
s(s—1)(s—2) s(s—1)(s—2)

A(s —1)(s—2)+ Bs(s — 2)
Puts = 0 in (1)
A(-1D)(=2)=2
A=1

2+5s _1
s(s—1(s—2)




wg=l_7 1 o 1
GO S 7 s—1+6s—2
1 L
() =LA = 7L ~ ]+ 6L ]
s s—1 s—2

x(t) =1—7et + 6e2t
Example: 5.67 Using Laplace transform solve the differential equationy” — 3y’ — 4y = 2e-t,
withy(0) =1 = y'(0).

Solution:

Giveny' — 3y — 4y = 2e~t; withy(0) = 1 = y'(0).
Taking Laplace transform on both sides, we get,

Lly'®] - 3Ly (O] — 4Lly(@®)] = 2L(e™)

[s2L[y(D)] = sy(0) — ¥'(0)] = 3[sLIy()] — y(0)] — 4L[y(O] =2 —
Substituting y(0) = 1 = y'(0).

1

2

[s2Lly(D)] — s — 1] = 3[sLly(D] - 1] - 4Lly(®D] = —

s+1

S2LIY(O)] = s — 1 = 3sLy(O] + 3 4Ly(O] = —

s2L[y(t)] — 3sL[y(t)] — 4L[y(®)] = s-l-il +s—2
PutL[y(t)] =y
Py 3574y 4s—
s?y-3sy—4y= —+s—2
[s2—3s— 4= s+il+s_

[SZ —3s — 4_]—): 2+s(s+1)—2(s+1)
s

+1
2

— 2+s + 5—25-2
s+1
2

(s+1D)(s —4p="7,

. s2—s

¥ (s+1)(s+1)(s—4)

_ s2—s

b (s+1)2(s—4)
s2—s _ A B

Consider m = S+_1 GH1)2

s2—s — A(s+1)(s—4)+B(s—4)+C
(s+1)2(s—4) (s+1)2(s—4

A(s+1)(s—4) + B(s —
Puts = —1 in (1)

OB =N
B="2
5

s2—s
(s+1)2(s—4)



. B3 __2 1w
e 25(s+1)  5(s+1)2  25(s—4)

=By 1 g_27-17_1 12f R
y®) =5l o) — 567 o) + sl S

y(t) =18et —2te—t + 124
25 5 25

2
Example: 5.68 Solve the differential equationddy?— 3 d’:ﬁt- 2y = e~t, withy(0) = 1 and y'(0) = Ousing

Laplace transform.

Solution:

Giveny" — 3y + 2y = e~t; withy(0) = 1 and y'(0) = 1.
Taking Laplace transform on both sides, we get,

Lly'(®] = 3Ly (©)] + 2L[y(®)] = L(e™®)

[s2LIy(D)] = sy(0) = y'(0)] = 3[sLly(®)] — y(O)] + 2Ly(®)] = —
Substituting y(0) = 1 and y'(0) = 0.

[s2LIy(©] =5 = 0] = 3[sLly(®] — 1] + 2L[y(D)] = —

s+1

s2L[y()] — s — 3sLly(®)] + 3 + 2L[y(®)] = :11

S2LIy(®)] - 3sLIy(®] + 2Lly(®O)] = ——+5—3
PutL[y()] =7y

s2y-3sy+2y= —+s5s—3

[s2—3s+ 2= ——+5—

[SZ —3s+ 2]—3; 1+s(s+1)—3(s+1)
) s+1

— 1+s + s—3s-3
s+1
2

. . s —=25=2
(s =Dl —2)y="=24

. §2—25—2

¥ (s+1)(s—1)(s—2)

. §2—2s-2 A B
Consider +D(—D(-2)  s+1 =
§2—2s-2 — A(s—1)(s—2)+B(s+1)(

(s+1)(s—1)(s—2) (s+1)

As—1)(s—2)+B(s+ 1)

Puts = —1 in

)
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Example: 5.69 Using Laplace transform solve the differential equationy” + 2y’ — 3y = sint,

withy(0) = y'(0) = 0.

Solution:

Taking Laplace transform on both sides, we get,

Substituting y(0) = 0 = y'(0).

Given y" + 2y — 3y = sint with y(0) = 0 = y'(0).

LIy"(®)] + 2L[y' (®)] — 3L[y(t)] = L(sint)

[s2LIy(®)] = sy(0) — ¥ (0)] + 2[sLIy(D)] — y(0)] = BLIy(®)] =—, |

1

[s2L[y(©)] = 0 = 0] + 2[sL[y(®)] = 0] = 3Ly(®D] = —=

s24+1
s2LIy(®)] + 2sLly(®)] - 3Lly(O] = ——

s2+1
s2Ly(®] + 2sLly(D] = 3LIy(©O] =—,
PutL[y(8)] =y
1

Sz_y'|' 25}7— 35: m

1

2 - A
[s2+ 25— 3]y= poreT

1
(- DG +3%= -
_ 1
¥ (s—1)(s+3)(s2+1)

9 1 A B Cs+D
Considet ——M88M = —+ = -
(s—1)(s+3)(s2+1) s—1  s+3  s2+1

1 — A(s 2+ 1) ( s+3)+B(s—1)2(s
(s—1)(s+3)(s2+1) TD+(Cs+D)(s—1)(553n)(s43)(s2+1)

A(s2+1)(s+3)+B(s—1)(s2+ 1) + (Cs
Puts = 1 in(1) Puts = -3 in(1

8A=10+1 B(—4)(10) =

Bp="1

A= 40

DO =

Puts = 0in (1), we
et 3
A—B—-3D=1= 2+

8

1 3,1

3D = §+Z)_

3D

(s—1)(s+3)(s



- 1 1 s 1

¥ Be-D  20(43) 106241 56240
17-1 171 1 _1 A5 1 L-1
y(©) = ok [ (- 1) abr ! Z]— o L s2+1] [s2+1]

y(t) = —Set - —4%—3t - 1—(%)st — 2sint)

Example: 5.70 Using Laplace transform solve the differential equationy” — 3y  + 2y = 4e2t,
withy(0) = -3 and y'(0) =5

Solution:
Giveny" — 3y + 2y = 4e2t; with y(0) = —3 andy (0) = 5.
Taking Laplace transform on both sides, we get,

Ly"(®)] = 3L[y' ()] + 2L[y(t)] = 4L(e?)
[s2L[y(®)] = sy(0) — ¥'(0)] = 3[sLy(®)] — y(0)] + 2L[y()] = 4
Substitutingy(0) = —3 and y'(0) = 5.

[s2LIy(6)] + 35 — 5] = 3[sLIy(O)] + 3] + 2Ly(D] = —

s2L[y(t)] + 35 — 5 — 3sL[y(©)] — 9 + 2L[y(t)] = iz

"I)l
NH

s2L[y(t)] — 3sLly(t)] + 2L[y(t)] = ; —3s+ 14
PutL[y()] =

sZy- 3sy + 2= s——3s+
14
[s2—3s+ 2]y= ;+ 14 — 3s

[s2- 35 + 2= AU
57,
(s — J.).CS;Z_)QE_
4+(14-3s)(s—-2)
s=2
y= dEA=Ss)(s=2)
sre-siien) = sl

1S
(s—1)(s—2)2 s—1 (s—2)2

Consider

4+(14-35)(s—2) _ A(s—2) -IZ-B(s—l)(s—2)+C(s—1)
(s—1)(s—2)2 (s—1)(s—2)2

A(s —2)2+B(s—1)(s—2)+ C(s
pu)ts=1in Puts =2 i
)] ®
A=4-11 =

44+(T[4:3Z)(s—2) =
(s—1)(s—2)2



1
= —7et +4e2t + 4e2 71 ],

y(t) = —7et + 4e?t + 4ett

Example: 5.71 Using Laplace transform solve the differential equation y" — 4y + 8y = e2t,
withy(0) = 2 and y'(0) = 2.

Solution:

Taking Laplace transform on both sides, we get,

Substituting y(0) = 2 andy'(0) = —2.

Giveny' — 4y’ + 8y = e2t; with y(0) = 2 andy'(0) = —2.

LIy"®)] - 4Ll (O] + 8LIy(®)] = L(e?)
[s2Ly ()] = sy(0) = ¥/ (0)] — 4[sLly(®)] — y(O)] + 8Ly = —

[s2Lly(t)] — 25 + 2] — 4[sL[y()] — 2] + 8L[y(t)] =
S2L[y(5)] — 25 + 2 — 4sLy(0)] + 8 + BLIy(D] = —
s2L[y(t)] — 4sLy(®)] + 8L[y(®)] = ﬁ +2s—10

PutL[y(®)] =y

sZy— 4sy + 8y= L
s—2 10
[s2—4s + 8= £+25—

[52 — 45+ 8]'y= 14+(2s—10)(s—2)
s—2

y= 1+(25—10)(s—2)
G=2)(s7=4s+8)
— 1+(2s—-10)(s—2)
C=Dft=2
1+(25—10)(s—2) _ A o B(s—2)+C

G224 s—2 (5274
— Al(s—2) i4]+B[(s—2)+C](s—
G—21G—22+4]
Al(s — 2)2+ 4] + B[(s — 2) + CI(s — 2)

Puts = 2 in (1) Puts = 0 in (1)

Consider

44 =1 + 84+ 4B — 2C
0 2

A="



=1Le2t +7e2cos2t — 6e2t SM2t
4 4 2
y(t) = Le2t + 7 e2cos2t — 3e2tsin2t
4 4
Problems without using Partial Fraction

2
Example: 5.72 Solve using Laplace transform ¢ ZTZ— 2 dxj x = et,withx = Z,dxﬁ —latt=0

Solution:
Givenx' —2x +x = et; x(0) = 2; x'(0) = —1
Taking Laplace transform on both sides, we get,
LIx"®)] = 2L[x' (O] + LIx@®)] = L(e)
[s2L[x(8)] — 5x(0) — x'(0)] — 2[sL[x()] — x(0)] + L[x(t)] = :11
Substituting x(0) = 2; x'(0) = —1
[s2L[x(t)] — 25 + 1] — 2[sL[x(t)] — 2] + L[x(t)] = :11
s2L[x(8)] - 2sLIx(®)] + LIx(@®)] = —+2s—5
sZL[x(t)] — 2sL[x(t)] + L[x(t)] = ﬁ +2s—5
Put L[x(t)] =x

1

S2X — 2sXx +x = 1+Zs—5

s—

[s2—2s+ 1]x= S_Ll+25—5

—1)2f= L .
(s —1)%x s_1+23 5

By 1 + 2s 5
Y= ene2 T ez (12
x() =L-1[——]+2L-1[—] - 5L1]
(s=1)3 (=12
1 s—=1+1
— ot] -1 -1 .
el 2Lt ]

2

=ett 4 pp-1[—==1
e 2!+2L [(5—1)2+

2
=ett+2071[1]
2! s—1



Week 6
Topics: L-R Circuit problem
Pages (51-56)

APPLICATIONS TO ELECTRICAL CIRCUITS

A simple electrical circuit [Fig. 3-2] con-
sists of the following circuit elements con-
nected in series with a switch or key K:

1. a generator or battery, supplying an elec-
tromotive force or e.m.f. E (volts),

2. a resistor having resistance R (ohms),
. an inductor having inductance L (henrys),
4. a capacitor having capacitance C (farads).

These circuit elements are represented symboli-
cally as in Fig. 3-2.

o)



When the switch or key K is closed, so that the circuit is completed, a charge Q
(coulombs) will flow to the capacitor plates. The time rate of flow of charge, given by

‘fl(t) =], is called the current and is measured in amperes when time ¢ is measured in
seconds.
More complex electrical circuits, as shown for example in Fig. 3.3, can occur in

practice.

K
N (£) ~ P
/
= Cy
R ‘: —c
= 2
By B Ir D
;b
M > A F Q
I’ﬂ
H o G
= 00 -

Fig. 3-3

An important problem is to determine the charges on the capacitors and currents as
functions of time. To do this we define the potential drop or voltage drop across a circui
element.

(a) Voltage drop across a resistor = RI = R ?1?

2
(b) Voltage drop across an inductor = L :11: L '; g
(¢) Voltage drop across a capacitor = -34

(d) Voltage drop across a generator = —Voltage rise = —F
The differential equations can then be found by using the following laws due to Kirchhoff.

Kirchhoff’s Laws

1. The algebraic sum of the currents flowing toward any junction point [for example A
in Fig. 3-3] is equal to zero.

2. The algebraic sum of the potential drops, or voltage drops, around any closed loop
[such as ABDFGHA or ABDFQPNMA in Fig. 3-3] is equal to zero.

For the simple circuit of Fig. 3-2 application of these laws is particularly easy [the
first law is actually not necessary in this case]. We find that the equation for determina-

tion of @ is - - "
e +Rdt+c = F (8)

L—=

By applying the laws to the circuit of Fig. 3-3, two simultaneous equations are obtained



Question: An inductor of 2 henrys, a resistor of 16 ohms and a capacitor of 0.02
farads are connected in series with an electromotive force (e.m.f) of 300 volts. At ¢
= 0 the charge on the capacitor and current in the circuit is zero. Find the charge
and current at any time 7> 0.

Solution: Let 0 and 7 be the instantaneous charge and current respectively at ti

(%)
_@

2h —02fd

16 ohms

By Kirchhoff’s Laws, we have 2 dé +161 + % =300 .ueees

2
Since =42 50 (1) becomes 2470 41699 1 50
dt dr’ dt

or, 4794899 1250159
dt*>  dt

with the initial conditions 0 (0)=0, 7(0)=

Taking Laplace transformation in (2), w



150

S

:>(s2+8s +25)q=m
s

= 5*q +8q +25q =

_/a 150
Ly K (s2+89 +25)

s v (s +4)+9

6  6(s+4) 24
S (s+4y+3  (s+4)+3

Taking inverse Laplace transformation in (3), we get

6  6(s+4)
LHg =Lt R

(s

S Q=6—-6e*cos 3t—8e*si

The current of the circuit is

T=9%2 2404 cos 3¢+ 32 sin 3¢ +18 e*sin 3¢



Solving Electrical Circuits Problem

Problem: From the theory of electrical circuits we know, 1= CQ
where C is the capacitance, i = i(t) is the electric current , and v = v(t) is the voltage.
We have to find the correct expression for the complex impedance of a capacitor.

Solution:
= Taking the Laplace transform of this equation, we obtain, 1(s) = C(sV (s) = V,),

Where, 1(5)=£{ilh}. gng Vo = v(t)|e=o-
Vi(s) = C{x(t)}.

= Solving for V(s) we have y(4) = ’(_(") + ‘_
S s
= We know, AL
W,  Z(s) (o) heus’
So we find:

Z(s) = ;l?

which is the correct expression for the complex impedance of a capacitor.



Question: An inductor of 3 henrys, a resistor of 30 ohms and an electromotive
force

(e.m.f) of 150

volts. At = 0the current in the circuit is zero. Find the current at any time, >0.

Question: An inductor of 2 henrys, a resistor of 16 ohms and a capacitor of 0.02
farads are connected in series with an electromotive force (e.m.f) of 100 volts. At
= 0 the charge on the capacitor and current in the circuit is zero. Find the ch
and current at any time > 0.



Week 7
Topics: Beam related problem

Pages (57)

APPLICATIONS TO BEAMS

18. A beam which is hinged at its ends 2 =0
and z=1 [see Fig. 3-13] carries a uni-
form load W, per unit length. Find the
deflection at any point.

The differential equation and boundary con-
ditions are

ary W,
i > el ; 0<z<l (1)

Fig. 3-13

Y(0)=0, Y"(0)=0, Y() =0, Y'(D=0 (2)

Taking Laplace transforms of both sides of (), we have, if y = y(s) = £{Y(2)},

W,

gy — £Y(0) — £2Y(0) — sY"(0) — Y0) = g7 )

Using the first two conditions in (2) and the unknown conditions ¥’(0) = ¢;, Y""(0) = ¢, we find

€ Co W,

v = gtat s
Then inverting,
e W cox® Wyt
Y() = ¢z + % -+ Ei-o %;— = o + -%— _ﬂgﬁl.

From the last two conditions in (2), we find

 WoB Wl
1 = S4ET’ 2 2ET

Thus the required deflection is

W,
samy (Br — 203 + oh) =

Wo
Y(x) = Wz(l—z)(l’-l—lx—z’)



Fourier Serie

Week 8

Topics: Fourier analysis

Pages (58-71)



Fourier Seri

Periodic Functi



The
Mathematic
Formulation

» Any function that satisfies

J@O=f@+T

where 7T is a constan
of the function.



Example:

f(t) = COS t_-l- OOSt_ Find its peri
3 4

J@O)=f@+T == cos +cos’ =¢
) 3 4

Fact: cos0 = cos(0 + 2mmn)



Example:

f(t) = COSQ)lt + (DS(D2t Find its period.

@) =f({+T oy COSO+ COSM = cosm, (t +



Example:

f(t) =cosl0t + cos(10+ m)¢

Is this function a periodic one?




Some Important Functions:

Periodic Functions:

A function f(x) is said to have a period P or to be periodic with periodic P if for
f(x+P)=f(x), where P is a positive constant. The least value of P>0 is called t
period or simply the period of f(x).

Ex1: The functions sinx and cosx has periods 2z, 4z, 6, ..... However, 2
period or periods of sinx and cosx.

Ex2: The period of tanx is m.

Ex.3: A costant has any positive number as a period.

Piecewise Continuous Functions:

A function f{x) is said to be piecewise continuous in
divided into a finite number of subintervals in each
the limits of f{x) as x approaches the endpoints of ea

x, 1fx>0. : . : :
Ex: f(x)= = . if <p IS @DPiecewise continuous function.



Introduction

» Decompose a periodic input signal i
components.

A periodic sequence f(t)

NANAN VAN
VoV VT

65



Synthesis

120, :%+Zan cos 2’;’” £
n=1

n

H_' b= —~ —
DC Part Even Part
—

T is a period of al

Let (DO=ZTC/ T.



Fourier Coefficients of Even
Functions

() = f (=)




Fourier Coefficients of Odd
Functions

J () ==f(=1)




Even and Odd Functions:

A function f{x) is called even function if f{-x)=f(x) and is called odd function if f{-
x)=A(x).

Ex: x?, x¥, x%, cosx, secx are even

functions. Ex: x3, x3, x7, sinx, tan3x are odd

functions.

Fourier Series:
Let f(x) be defined in the interval (-L, L) and determined outside of thi
f(x+2L)=f(x), i.e. assume that f{x) has the period 2L. The fourier s

ex ansugn espomtl}pg tos{:(m A8, deﬁned to be
A ffl‘f ]

Where the fourier coefficients ao, a» and b, are

{ao = —f S (x)dx
{ ‘ nmx

a,,—L— f(x)COS —dx n=0,12......

lL
b= — [ f(xsin 'm—xdx
L7,

Problems: Graph each of the fol



@0f@9=$3 0 Period =10

-5<x<0

[sinx  0<x<m :
b = =
()f@)-@ - L. Period =2

( 0<x<2

0
©f()=H1  2<x<4 Period=6
0 4<x<6

Solution: (a)

Since the peri
heavily is e
dashed.

JAS,



Since the period is 2m, the portion of the graph in 0<x<2z which is indicated
heavily is extended periodically outside of the range which is indicated in
dashed. It is noted that f(x) 1s defined for all x, and is continuous everywhere.

Since the period is 6, the portion of the graph in 0<x<6
heavily is extended periodically outside of the range wh
It is noted that f(x) is defined for all x, and x=-2, 2, -
discontinuous point of f{x).s

Week 9
Topics: Graph of funct
(71-73)

Problems:

Classify each of the
neither even nor od




O0<x<3

(@) f()= ELZ_ 4 * Period=6

3<x<

_ |eosx 0<x<m ._
() £ ()= {0 DEXE" period =2

(¢) f(x)=x(10-x), 0<x<10 Period=6

Solution:

(a) The graphical representation of the gi
is

From the above
origin. So, it 1S

(b) The gra

/2



H

From the above figure we can see that the function is sy
So, it is seen from the figure that f{-x)=f(x), Hence the funct

Exercisel: Graph each of the following functio
as they are even, odd or neither even nor odd.

O0<x<2

(a) S (x) = %8_8 Period =4

2<x<4

(c)f(x)=4x, 0<x<10 Perio

Week 10




(2) a function "f" has bounded variation over one time period. The functions
with bounded variations can have

(1) at most a countably infinite number of maxima and minima, and

(i1) at most a countably infinite number of finite discontinuities.

Dirichlet conditions for Fourier transform

A set of Dirichlet conditions for the convergence of Fourier transform are:
(1) a function "f" is absolutely integrable over the entire duration of time.

(2) a function "f" has bounded variation over the entire duration of time. The

functions with bounded variations can contain (i) at most a countably infinite
number of maxima and minima, and (i1) at most a countably infinite number
of finite discontinuities.

Dirichlet conditions are sufficient but not necessary conditions.

Parseval’s Identity:[ et the Fourier series corresponding to f(x) co

uniformly in (-L,L), then the Parsival’s Identity is

15 2 a S 2 2
ZI {fe)} de=, +>.(a’+b>)
—1, 2 n=1

Where ao,a.and b, are Fourier coefficients respe

Parseval’s Identity:L et the Fourier series ¢

uniformly in (-L,L), then the Parsival’s

15 2 < 2 2
ZL{f(x)} dx=§2 +§(an +b, )



Where ao,a» and b, are Fourier coefficients respectively.

Proof:
19 92 +i|(ancos mth+b,,sin ”"T’“j ............ (1)
n=1

Then multiplying (1) by f(x) and integrating term by term from —-L to L we
get
I {f(Y )}z _02 _[f(x)+2| a If(x) cogmt_x+b J.f( ) sin mtx}

= +LY (a2 +7)
92 = n n

o 1] 6} =1+ S )
—L 2 n=1

Where we have used the
results

j f)dx = La,, j () cos—dx La,,,j' £ () sin

Is obtained from the Fourier Coefficients.
proved.



Week 11
Topics: mathematics of parsival’s Identity

Pages (76-80)

Problem: (a) Expand f(x)=x, 0<x<2 in a half range cosine series.(b)

Write

Parsival’s Identity corresponding to the Fourier series of (a).(c) Determine fom (b)
el 1
14 2+ 3

the sum S of the series

Solution:

(a) Extend the definition of the given function to that of the even functio
period 4 which is shown in the below figure. This is sometimes called t
extension of f(x). Then 2L=4, L=2.

Thus b,= 0,

2[’ nnx g - 2° nmx
a,= Xx) COS ——ax = _ (x) cos " dx
L A L 2:? 2

0

() 2sin nmx )\ _ (N =4 o X
Wr 2 ) W =2 )

2

Ifn=0,a0=J.xdx=2
0

—4 nTX
—-(cos nm —1) cos—~
nm 2

Then f(x) =1+ Z

=1- %|(cos Ly lzcos R

' 2 3

(b) From (a) we get,

Then Parseval’
becomes



14 , 12 , 2 & 16

or §:2+6_j(i+1_+ 1_+ ..... J\
3 T

_ 1. | m
he  atgEt gt =gg

© Here,

s 6114 %4 13—4+ ...... J )

—(1+1_ 1 N (L N
@ 3 s )+|\24 g gt J
—(%ﬁ;—“ 15—4 ...... ) +2%\|(11_4+ 124+314+ _____ J\
_nt, S

9% 16

i.e from which, §="_
90

ExerciseS: (a) Expand f(x)=x, 0<

Parsival’s Identity correspon

Exercise6: (a) Expand f(

Write Parsival’s [



Exercise7: (a) Expand f(x)=x, 0<x<4 in a half range sine series.(b)
Write

Parsival’s Identity corresponding to the Fourier series of (a).

Week 12

Topics: Fourier Series Related mathematics

Pages (78-80)

Problem:

(a) Find the Fourier coefficients corr
functio
S<x<0

_ 0 od —
f(x)—{t?, o L0 Period

(b) Write the correspondin

series. Solution: The gra




c+2 L

a—L- I f(x)cosrﬁr ;ff(x)cos W

:l{r 0.cos "X d§+ mc_xdx;
5% 5 3.cos >
0
s 5
=gjcosm_xdx:§(|_5sinm\J/ =0ifn=0
5 5 5 nm S %

0

i 3
_an:(), a,=ay= 3 .cos nm.0 dx=_f3.dx=3
5 0 5 5 0

c+2 L

b,= j f(x)Sln—)eClx=51I_f(x)sin 52%

=1 mﬁ) sin ”ﬂxdx+f3 sin 71X abc}”
SIs 5 o 5 )

5
=Ej5inm—de=§(—iSCOSnnx\l 4 3(1—C05m't)
5 5 50 nn 5 ) nm

(b) The corresponding Fourier series
is .
fo="3 + 2| aCos 05 = +b,Sin ”’”‘j

n=1



) z[o S<x<0 Yy . =f8 2<x<0 A
(1) f(x) 4[3 o A Period =10  (ii) f(x) {LO o A Period =4
(i) £ (x) = %3 (3) z z 22 Period=6  (iv) f(x)= %22 (')3 :xx<<30 Period =6
(-3 S<x<0 A ] (8 4<x<0 A
V) f(x)= i3 o Period =10  (vi) f(x)= {L_S o S Period =38

Week 13 Topics: Half range Fourier Series
Pages (80-89)

Half range Fourier sine or cosine Series:

A half-range Fourier sine or cosine series is a series in which
only cosine terms are present, respectively. When a half-range s
a given function is desired, the function is generally defined 1
then the function is specified as odd or even. In such case,

Z . nmXx :
a,=0, b,= T f(x)sin de for half - range Sine
0

b=0, a =2"f(x)cos nnxdx for half- range
[ n n T o

Problem3: Expand f(x)=x, 0<x<2,1i
series. Solution:
(a) Extend the definition of t

period 4 which is shown 1
extension of f(x). Then



Thus a,=0 and

2 52 )
b,= _f ¥) sin X dx = < |f(x) sin " 4
) r@sin 2 sz :

0

2

== COS N7

nT

(O =T

nmtx

0

Thenf(x) = Y. o

n=1 nT 2

Lgp2mx 1 dmx ) J

(b) Extend the definition of the given function to that
period 4 which is shown in the below figure. This is
extension of f(x). Then 2.=4, L=2.

ThuS bn =0,

a,= ff(x)cosm_xdx 2If(x)cos 2dx

[ ( smnx\\
O

anoaaozjxdxzz
0




It should be noted that although both series of (a) and (b) represent f(x) in
the interval 0<x<2, the second series converge more rapidly.

Exercise 4: Expand the followings functions in a half range (a) sine series,
(b) cosine series.

() f(x)=4x, 0<x<4
()f(x)=ax, 0<x<2 wherea isany arbitrary constant.

(i)f(x)=x, O<x<m



Non-Periodic Function
Representation

» A non-periodic function
Fourier series which is



Without Considering
Symmetry

» A non-periodic function
Fourier series which is



Expansion Into Even
Symmetry

» A non-periodic function
Fourier series which is



Expansion Into Odd Symmetry

» A non-periodic function
Fourier series which is



Expansion Into Half-Wave
Symmetry

» A non-periodic function f{(¢
Fourier series which is



Expansion Into
Even Quarter-Wave Symmetry

» A non-periodic function f{(¢
Fourier series which is d



Expansion Into
Odd Quarter-Wave Symmetry

» A non-periodic function f{(¢
Fourier series which is



Week 14

Topics: Orthogonality
Pages (90-100)
Orthogonality:

Orthogonality is a fundamental concept in Fourier series, which are used
periodic functions into simpler terms:

o Definition: Two functions are orthogonal on an interval if th
zero. The inner product is defined as the integral of the pr
functions over the interval:

h
i fy)= / 00 =0 o

Orthogonal sets

A set of functions is orthogonal if
example, the set of functions (1,



Orthogonal Functions

» Call a set of functions {¢,} or
an interval a <r¢ < b if it sati

[ 0,00,



Define wy=2x/T.

Orthogonal set of Sinusoidal
Functions

2 T/2 |
cos(mw,)dt=0, m=#0 _[_ si(m w,t)dt =0,

IT/
-T/2

T/2

T/2 0 m+%*n
j /zcos(m ®,7) ®,t)dt = £

-7 e \7/2 m=n
T/2 | 0 m+*n
I /2sm(m ®,?) W, 2)dt = {

-T Sin(n LT/ 2 m=n

o,)dt=0, for all m and

T/2 | l‘
in
I—T/Zs (m 0)



Proof

cosocosf} = 1_[cos(oc + ) + cos(ot —3) ]
2

J._TT//Zz cos(mm,t) o, 1)dt m # N

cos(n
1 12 J 1 ¢r/2
= EI_T/ZCOS[(m +n)o,t]dt + EI_T/ZCOS[(m &

1

l T/2 1
2(m+n)o,

sin[(m +myoy]| .+

1 1 :
= —— % sin[(m + n)w

=(




Proof
cosocosf} = 1_[COS(OL + ) + cos(o. —3) ]
2

cos’a = 1_[1+ cos20.]
2

T/2
I_T/ ) cos(m,t) ,?)dt m
cos(n

- IT/z cos’(mwf)dt = lr/z
2 J-T

-T/2




Orthogonal set of Sinusoidal
Functions

Define wy=2n/T.

T/2 T/2

I_T/zcos(mﬁ) Hdt=0, m=#0 j_T/zsin(mmOt)dt =0, m=#0

J~T/2 ( ) ( )t 4( 0 m#n
cos(mw t) cos(n —

-T/2 0 @ T/2 men
1 0 m+n

J. , /25111(’% ) o, 1)dt = <[
_ sin(n \7/2 m=n
TI2 |

IT/zsln(m @ot) o,)dt =0, for all m and
> bUS(ﬂ 7

1,
1 COSM, I, COS2m,t, COS3®,yt,[]

SINWf, sin 2 ¢, sin 3¢ ¢,[]]

an orthogonal set.




Decomposition

f(t) = %O + Z a, cos(nm,t) Z b, sin(nm )
n=1 4 n=1

y 2 eto+T
%_?L f(Ddt

B 2 to+T d
a, = ?J;O f(¥) cosnw tdt n=



Proof

Use the following facts:

[ costma,ndi=0 20| ([ sin(mo,ndi=0
. cos(moydt=0, m . sin(moydt =0,

<[ 0O m#n

sin(m ot o, H)dt =
(m .0) of) LT/Z =

-T/2

-T/2

sin(m ) ,)dt=0, for all m and




Example (Square Wave)

1

20t .
a, =—j cosntdt = —si
21 Y0 nm

n 1
a2 i tdt = ——
27_[ J.O Sin 7 g




Example (Square

:l+2(sin t+—1 SIn 3z‘+5—1 sin 5¢ J




Example (Square
Wave)

1 2
=1+
+D)\ 2

sin t+—1 sin 3t+—1 sin 5t

3

f(t)|

1

-6t -5n -4n -3n 2w &

e,




Week 15

Topics: Fourier Integrations

Pages (101-102)

Problem2: Expand f(x)=x?, 0<x<2r, in a Fourier series if the pe
2m.

Solution: The graph of f{x) with period 2= is as follows

Period=2L=2m and L




2n

2L 1
= I fx) s1n— dx =— j x*sinnm dx

e~ =

f(x €OS nx _( ) —sin nx 5 COS nx _—4n
2 n? n I n
2 0
Then f(x) =x’= nil +Z(izcos nx—4—nsin nx)/or 0<x<2m
n=1 n n

Exercise3: Graph each of the following functions, and also find its
corresponding Fourier series.

(i) f(x) =2x*,0<x<2m
(ii) £ (x) = ax?, 0 < x < 2w, where a is any arbitrary constant.
(iii)) f(x) =x*, 0<x<m



Week16
Topics: Applications
Pages (103-104)

Application:

Problem: Solve the boundary value
problem

Ou _

&
= 26}”.[, w(0,) =10u(3,7) = 40, u(x,0) = 25, u(},1) < M

Solution: To solve the present problem assume that u(x,¢

@(x,t) 1s to be suitably determined. In terms of v(x,?)
problem

becomes

%= 22%4247(e), v(0,) +4(0) = 10:(3,1) +6(

This can be simplified by choosi
¢"(x) =0,$(0) =3, $(3) =40

From which e can find ¢

problem is



D=5V 0,0) = 105(3,1) = 40, v(x,0) = 15-10x
ﬁt 6x

We can find the solution of this problem is in the form

S . mT
Wx,f) =Y B 21 sm%

m=1

The last condition
yields

15-10x= Y B, sin 7%

m=1

From which
2 3
B,= 3_j(ls —10x)sin TR g = 2(cos mm —1)
. 3 mm

Since u(x,t) = v(x,t) +¢(x,t), we have finally

ux,)=10x+10+ Y 39 (cos mm —1)e 212 sin "X

m=1 T
as the required solution.

The term /0x+10 is the steady-state
long
time has elapsed.




Week17
Topics: Applications
Pages (105-107)

Consider a mass-spring system as before, where we have a
mass m on a spring with spring

constant k, with damping c, and a force F(t) applied to the
mass.

Suppose the forcing function F(1) is 2L-periodic for some
L>0.

The equation that governs this

particular setup is k F(1)
m —»
mx”(t) + cx’(t) + kx(t) = F(t) w

damping ¢

The general solution consists of the
complementary solution x,, which
solves the associated
homogeneous equation mx” + cx’ + kx = 0, and a particular
solution of (1) we call x,.




Forc? 0,

the complementary solution x, will decay as time goes by.
Therefore, we are mostly interested in a

particular solution x, that does not decay and is periodic with
the same period as F(1). We call this

particular solution the steady periodic solution and we write it
as x,, as before. What will be new in

this section is that we consider an arbitrary forcing function
F(1) instead of a simple cosine.

For simplicity, let us suppose that ¢ = 0. The problem with c >
0 is very similar. The equation

mx” + kx = 0
has the general solution,

x(1) = A cos(wi) + B sin(wi);

Where, - .
o= |E

106



Any solution to mx”(t) + kx(t) = F(t) is of the form
A cos(wi) + B sin(wi) + xgp.
The steady periodic solution x5, has the same period as F(1).

In the spirit of the last section and the idea of undetermined
coecients we first write,

F(1) = % +Zc,,cos(%t)+d,,sin("—[t).

Then we write a proposed steady periodic solution x as,

x(r) = % - ia,, cos (n_zr t) + b, sin(nfxt)l.

where a, and b,, are unknowns. We plug x into the deferential
equation and solve for a, and b, in terms of ¢, and d,. ’




